If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3a^2+16a+17=0
a = 3; b = 16; c = +17;
Δ = b2-4ac
Δ = 162-4·3·17
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{13}}{2*3}=\frac{-16-2\sqrt{13}}{6} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{13}}{2*3}=\frac{-16+2\sqrt{13}}{6} $
| 15=-6k+7+2 | | 8x=50=90 | | -60=5x+15 | | x-5=11* | | 100=8x+12 | | 483=6x-63 | | 2(2x+1)=10x–4 | | -77+8x=127-9x | | 2q+3=3 | | 3w^2-12w+7=0 | | 6+(3x+4)/4=10 | | -18/x+11=2 | | (1/3)^2u+5=(1/9)^3u-1 | | 2x+8+x+25=90 | | 9x+3x–2=10x+8 | | -11-5x=6(5x-4) | | 2a-6.3=15.7 | | 21/m=18/9 | | -10-3m=38 | | .8572=x/23 | | -7=3+8a+6 | | 8x+2x=5x-10 | | a/3-10=12 | | 2w=-11 | | (5x+16)+(9x-32)+90=180 | | k/8.3+95.2=38.1 | | 5x^2-(x+x^2)=0 | | 5b+7b+7=9b | | 7(x+1)=50+6 | | 30=-5d–5 | | I3x-3I=6 | | -3w^2-10w+1=-4w^2 |